Tag Archives: data

Brunel: Open Source Visualization Language

Published by:

BRUNEL is a high-level language that describes visualizations in terms of composable actions. It drives a visualization engine (d3) that performs the actual rendering and interactivity. It provides a language that is as simple as possible to describe a wide variety of potential charts, and to allow them to be used in Java, Javascript, python and R systems that want to deliver web-based interactive visualizations.


At the end of the article are a list of resources, but first, some examples. The dataset I am using for these is a set of data taken from BoardGameGeek which I processed to create a data set describing the top 2000 games listed as of Spring 2015. Each chart below is a fully interactive visualization running in its own frame. I’ve added the brunel description for each chart below each image as a caption, so you can go to the Builder anytime and copy the command into the edit box to try out new things.

data('sample:BGG Top 2000 Games.csv') bubble color(rating) size(voters) sort(rating) label(title) tooltip(title, #all) legends(none) style('* {font-size: 7pt}') top(rating:100)

This shows the top 100 games, with a tooltip view for details on the games. They are packed together in a layout where the location has no strong meaning
— the goal is to show as much data in as small a space as possible!
In the builder, you can change the number in top(rating:100) to show the top 1000, 2000 … or show the bottom 100. You could also add x(numplayers) to divide up the groups by recommended number of players

data('sample:BGG Top 2000 Games.csv') line x(published) y(categories) color(categories) size(voters:200) opacity(#selection) sort(categories) top(published:1900) sum(voters) legends(none) | data('sample:BGG Top 2000 Games.csv') bar y(voters) stack polar color(playerage) label(playerage) sum(voters) legends(none) at(15, 60, 40, 90) interaction(select:mouseover)

This example shows some live interactive features; hover over the pie chart to update the main chart. The main chart shows the number of people voting for games in different categories over time, and the pie chart shows the recommended minimum age to enjoy a game. So when you hover over ‘6’, for example, you can see that there have been no good sci-fi games for younger players in the last 10 years. Use the mouse to pan and zoom the chart (drag to pan, double-click to zoom).

data('sample:BGG Top 2000 Games.csv') treemap x(designer, mechanics) color(rating) size(#count) label(published) tooltip(#all, title) mean(rating) min(published) list(title:50) legends(none)

Head to the Builder Site to modify this. You could try:

  • change the list of fields in x(…) — reorder then or use fields like ‘numplayers’, ‘language’
  • remove the ‘legends(none)’ command to show a legend
  • change size to ‘voters’ — and add a ‘sum(voters)’ command to show the total number of voters rather than just counts for each treemap tile

Do you want to know more?

Follow links below; gallery and cookbook examples will take you to the Brunel Builder Site where you can create your own visualizations and grab some Javascript code to embed them in your web pages … which is exactly how I built the above examples!

A Quick Look at Lots of Songs …

Published by:

Songs by year, rating and genre

A Quick Look at Lots of Songs …

Songs by year, rating and genre

iTunes information about my songs, showing year, genre and my ratings

A quick visualization of the songs in my iTunes database. I was curious to see if there were any sweet spots in my listening history. As always, showing correlation between three different variables is hard, and here I wanted one dot per song, so the density is quite high (clicking on the image to show it full size is recommended).

Perhaps the most interesting thing for me personally was that I though i liked Alternative music more than I actually appear to. I notice especially that the 2010-2015 bin for mid-value rating is dominated by Alternative!

Appropriate Mappings

Published by:

Donating.vs.Death-Graph.0

Vox Article on viral memes and charitable giving

First, a disclaimer. This is not a post about the actual issues this article raises; just about the presentation of those claims. The image from the article has appeared in numerous places and been referenced by a number of news sources, as well as appearing in my Facebook and twitter feeds.

And it’s a bad image.

One minor issue is that it is hard to work out which circle relates to which disease, as the name of the disease only appears on the legend, so you are constantly moving your eyes from grey dot on left to the legend, to the grey dot on the right. Hard to make much sense. The fact that the legend doesn’t seem to have any order to it doesn’t help either. If this were 20 diseases instead of eight, the chart would be doomed!

Kudos for picking appropriate colors though. It helps that they used a natural mapping (pink <–> breast cancer; red <–> AIDS) that might help a bit.

The more worrying issue is that it makes a classic distortion mistake; look at the right side and rapidly answer the question, using just the images, not the text: “How many more deaths are there due to the purple disease than the blue disease?” 

Using the image as a guide, your answer is likely to be in the range 10 to 20 times as man, because the ratio of the areas is about that amount. When you look at the text, though, it’s actually only about four times. The numbers are not encoding the area, which is what we see, but they are encoding the radius (or diameter) which we do not immediately perceive.

The result is a sensationalist chart. It takes a real difference, but sensationalizes it by exaggerating the difference dramatically. If you want to use circles, map the variable of interest to AREA, not RADIUS. It fits our perceptions much more truthfully. It’s not actually perfect; we tend to see small circles as larger than they really are; but it’s much, much better).

So, here’s a reworking:

WhereWeDonate Vs. Diseases That Kill

I tried to keep close to the original color mappings, as they are pretty good, but have used width to encode the variable of interest, keeping the height of the rectangle fixed. I also labeled the items on both sides so we can see much more easily that heart disease kills about 4x as many people as Chronic Obstructive Pulmonary Disease. 

I also added some links between the two disease rankings to help visually link the two and aid navigation. The result is, I believe, not only more truthful, but easier to use. In short, it works.

Chord Display (Music)

Published by:

ITunes Music with a RAVE Chord visualization

ITunes Music with a RAVE Chord visualization

I took the data from my last post, aggregated up some fields and made a Chord Diagram for it, using RAVE. I was lazy and didn’t do a stellar job on rolling up years, so the year indicated is actually the center of a 4-year span — so 2007 is actually [2005.5, 2009.5] which is a little odd.

No big insights here — podcasts are all recent; alternative music is mostly recent too (Eels and Killers are artists with a large number of songs in my library). Interesting that I didn’t buy a lot of music form around 1999 …

I thought there were more packages that could do chord visualizations, but was only able to find some D3 examples.

iTunes Music to Data, via Python

Published by:

Music Treemap
Music Treemap

8000+ iTunes songs by genre and artist, colored by rating (ManyEyes version)

The track information stored in iTunes is pretty interesting from a visualization point of view, as it contains dates, durations, categories, groupings — all the sorts of things that make for complex, interesting data to look at.The only issue is … it’s in iTunes, and I’d like to get a CSV version of it so I can use it in a bunch of tools.

So, here is the result; a couple of Python scripts that use standard libraries to read the XML file exported by iTunes and convert it to CSV. It’s not general or robust code, just some script that worked for me and should be pretty easy to modify for you. I’m not a Pythonista, mostly doing Java, so apologies for non-idiomatic usage. Feel free to correct or suggest in the comments as this is also a learning exercise for me.

Continue reading