Tag Archives: visualization system

Appropriate Mappings

Published by:


Vox Article on viral memes and charitable giving

First, a disclaimer. This is not a post about the actual issues this article raises; just about the presentation of those claims. The image from the article has appeared in numerous places and been referenced by a number of news sources, as well as appearing in my Facebook and twitter feeds.

And it’s a bad image.

One minor issue is that it is hard to work out which circle relates to which disease, as the name of the disease only appears on the legend, so you are constantly moving your eyes from grey dot on left to the legend, to the grey dot on the right. Hard to make much sense. The fact that the legend doesn’t seem to have any order to it doesn’t help either. If this were 20 diseases instead of eight, the chart would be doomed!

Kudos for picking appropriate colors though. It helps that they used a natural mapping (pink <–> breast cancer; red <–> AIDS) that might help a bit.

The more worrying issue is that it makes a classic distortion mistake; look at the right side and rapidly answer the question, using just the images, not the text: “How many more deaths are there due to the purple disease than the blue disease?” 

Using the image as a guide, your answer is likely to be in the range 10 to 20 times as man, because the ratio of the areas is about that amount. When you look at the text, though, it’s actually only about four times. The numbers are not encoding the area, which is what we see, but they are encoding the radius (or diameter) which we do not immediately perceive.

The result is a sensationalist chart. It takes a real difference, but sensationalizes it by exaggerating the difference dramatically. If you want to use circles, map the variable of interest to AREA, not RADIUS. It fits our perceptions much more truthfully. It’s not actually perfect; we tend to see small circles as larger than they really are; but it’s much, much better).

So, here’s a reworking:

WhereWeDonate Vs. Diseases That Kill

I tried to keep close to the original color mappings, as they are pretty good, but have used width to encode the variable of interest, keeping the height of the rectangle fixed. I also labeled the items on both sides so we can see much more easily that heart disease kills about 4x as many people as Chronic Obstructive Pulmonary Disease. 

I also added some links between the two disease rankings to help visually link the two and aid navigation. The result is, I believe, not only more truthful, but easier to use. In short, it works.

Vega: A New Grammar-Based Specification for Visualizations

Published by:

I’m a big fan of using languages for visualization rather than canned chart types. I’ve been working with the Grammar of Graphics approach for a number of years within SPSS and now IBM, and my book “Visualizing Time” is composed 95% of Grammar-based visualizations. It’s pretty safe to say it’s my preferred approach.

Protovis (the forerunner of D3, to a great extent) was built on Grammar approach; Bostock and Heer’s 2009 article (on Heer’s site at http://hci.stanford.edu/jheer/files/2009-Protovis-InfoVis.pdf) gives a very good statement of the benefits of the Grammar-based approach as opposed to the “Chart Type” approach:

The main drawback of [the chart type] approach is that it requires a small, closed system. If the desired chart type is not supported, or the desired visual parameter is not exposed in the interface, no recourse is available to the user and either the visualization design must be compromised or another tool adopted. Given the high cost of switching tools, and the iterative nature of visualization design, frequent compromise is likely.

Continue reading

From the Vaults: Maps are Just Another Element

Published by:

For the Grammar of Graphics language-based approach to visualization, and therefore in the RAVE visualization system, maps are simply another element that can be used within the grammatical formulation.

Although most people consider a map a very different entity from a bar chart, all that really differs between a bar chart and a map of areas like the one included here is that instead of representing a row of data by a bar, we use a polygon (or set of polygons) on a map. Otherwise their properties ought to be the same — we can apply color, patterns, labels, transparency. We can set a summary statistic when there are multiple values for each polygon to reflect min, max, mean, median, range, or any of the regular sets of items. We can flip, transpose and panel the charts. Essentially, from the grammatical point of view, if you can do it to a bar chart, you can do it to a map. The only limitation is that whereas the sizes of the bars can be set or determined by data, the map polygons cannot, so setting sizes on the map polygons has no effect.

US Chorlopleth

Orthogonality is also important — so we can say we want a point element instead of a polygon, as in the above where we’ve added a second element to a RAVE US Map conveying different data as well as being a good place to put labels